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NONLINEAR BENDING OF TOROIDAL SHELLS OF ARBITRARY 

TRANSVERSE CROSS SECTION LOADED WITH INTERNAL 

PRESSURE 

V. V. Kuznetsov and S. V. Levyakov UDC 539.3 

In this paper we derive complete geometrically nonlinear relations for the problem of 
the bending of a toroidal shell of arbitrary transverse cross section. An accurate expres- 
sion is obtained for the potential of the internal-pressure forces, which holds for any dis- 
tortions of the shape of the cross section. An algorithm and a numerical solution of the 
problems of the deformations of cylindrical and toroidal shells for large elastic displace- 
ments are considered. The results obtained are compared with existing analytic solutions 
and experimental data. 

i. Introduction. Since the publication of the papers by Dubyaga [I] and Karman [2] 
there have been numerous investigations of the problem of the bending of thin-walled curvi- 
linear tubes, most of which have been carried out using the linear theory of shells. The 
case of the combined action of internal pressure and bending moments on a tube of circular 
transverse cross section is considered in [3, 4] using variational principles. Another 
approach was employed in [5], which consists of solving the differential equations of the 
bending of a toroidal shell, first loaded with internal pressure. It was established that 
the stiffness properties and the stresses in the shell depend nonlinearly on the pressure. 
Small displacements were investigated and the problem was regarded as being linear in the 
bending moments. Large displacements for pure bending of cylindrical shells were considered 
in [6], and the value of the limiting moment for which a loss of the stability for the shells 
occurs was found, and the stability of a shell on bending, taking into account changes in 
its shape in the subcritical state was investigated for the first time. The results ob- 
tained in [6] were refined in [7-9] both by retaining small terms in the initial relations, 
and by choosing different approximating functions. The effect of the internal pressure 
when cylindrical shells are bent was taken into account in [i0]. The previous results 
were generalized in [Ii] and two problems previously considered separately, were combined: 
the bending of curvilinear tubes in the linear formulation, and the deformation of cylin- 
drical tubes in the case of large elastic displacements. The nonlinear equations of the 
bending of tubes with a small initial curvature of the axial line were derived and integrated 
approximately. The problem of the bending of curvilinear tubes loaded with an internal 
pressure was also solved in [12, 13], taking the geometrical nonlinearity into account. 

It should be noted that the solutions mentioned above, particularly the nonlinear ones, 
were obtained using simplified deformation relations and retaining a small number of terms 
of the approximating series. It is therefore of interest to obtain more accurate results, 
particularly in the supercritical region. 

Certain problems of the finite bending of curvilinear tubes were investigated in [14] 
using the nonlinear theory of shells. 

2. Formulation of the Problem. We will regard the tube as a thin-walled toroidal 
shell. Suppose the tube is loaded with an internal pressure and boundary bending moments 
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acting in the plane of its curvature. We will assume that the tube is fairly long so that 
the effect of the boundary conditions at the edges can be neglected. 

Using the hypothesis of plane sections, we will write the equation of the middle sur- 
face of the shell before and after loading in the following vector form: 

R = R  o + r , r = e ~ x ~ , R  V = R ~ r V ~ r  V = e V x  V ~  i ( i =  1,2), ( 2 . 1 )  

where  R01 i s  t h e  r a d i u s - v e c t o r  o f  t h e  a x i a l  l i n e  o f  t h e  s h e l l ,  e~ = e~;(t)  a r e  t h e  u n i t  v e c t o r s  
in the plane of the transverse cross section, x i = xi(s) are Cartesian coordinates of points 
in the transverse cross section, and t and s are the lengths of the arcs of the axial line 
and the contour of the transverse cross section. Here and henceforth we will use summation 
over repeated indices, and the superscript V denotes quantities which refer to the deformed 
state. 

The problem of finding the deformed state of the shell reduces to deriving a parametric 
equation describing the form of the cross section xY = xY(s). We will consider deformations 

I 1 

of the middle surface of the shell that are small compared with unity. No limitations will 
be imposed on the displacements and the angles of rotation. Using (2.1) and the Kirchhoff- 

Love hypothesis eZs = gs + ZKs, e~ = e t + zK t (where z is the normal coordinate to the shell 

surface), we obtain the following equations for the deformations and the bendings: 

= A7'(  + - k x , ) ,  • = x - 

�9 _ V . ~ n V .  �9 n .  

(A t = 1 + k x i  i s  t h e  Leme p a r a m e t e r ,  ~ and k a r e  t h e  d e f o r m a t i o n  and c u r v a t u r e  o f  t h e  a x i a l  

l i n e ,  X~ a r e  t h e  d i r e c t i o n  c o s i n e s  o f  t h e  n o r m a l  t o  t h e  s h e l l  s u r f a c e ,  and t h e  d o t  d e n o t e s  a 
i 

d e r i v a t i v e  w i t h  r e s p e c t  t o  t h e  s c o o r d i n a t e ) .  

The p o t e n t i a l  e n e r g y  o f  d e f o r m a t i o n  ~ o f  a t o r o i d a l  s h e l l  w i t h  u n i t  l e n g t h  o f  t h e  a x i a l  
l i n e  h a s  t h e  fo rm 

H = (1/2) 56 (r~st + M~Ut + T,s~ + M~• At ds, 

where Tt, T s and M t and M s are the forces and bending moments connected with the deformations 

and curvatures of the middle surface by the relations of elasticity: 

T,=B(e,+~e,), T ~ = B ( e , + v E t ) ,  

2d,----D(~,+~,), M,=D(x,+~,), B=Eh/(i--v~), D=Bh2/12 

(E is Young's modulus, ~ is Poisson's ratio, and h is the thickness of the shell). 

The potential of the external forces acting on the shell can be written in the following 
form: 

w =  = M ( k v - - k )  

(U is the potential of the forces of the internal pressure p, and A is the work of the external 
bending moments M). 

The potential of the internal-pressure forces is taken with the opposite sign to the 
work of the internal-pressure forces for a change in the volume bounded by the shell. The 
complete expression for the potential has the form 

= + (x xy. - + k ( 2 . 2 )  

(V k is a constant, and V is the volume in the undeformed state). 

3. An Algorithm for Solving the Problem. To determine the deformed state of the shell 
we will use the method of local approximation of the deformation relations for an element of 
the contour [15]. Using an expansion of the unknown functions in a Taylor series and 

552 



neglecting terms of order 0(s 2) for a small element of length s we obtain the following 
approximation relations : 

~ = Ar~(~, + kVx v - kx~), ~ = A ; ~ ( k v ~  v - -  k~D,  

~ = O/2)(b~b,,xy~x~ - ~ ), 

At  = i + kx v xt = (t/2) (x~ -l-- x~), ~.'~ = (t/2) (ik~'~ -[- h~%), 
b~ = -b2  = - l / l ,  N~ =(6s  -- 4l)/ l  ~, N: =(6s  - 2l)/F. 

( 3 . 1 )  

Here xji and ~9. are the nodal values of the coordinates and the direction cosines of the jx 
unit vector of the normal for a finite element. 

The potential of the internal-pressure forces of the discrete system (2.2) can be 
written in the form of the sum of the contributions of each of the elements: 

u =  u ~ , u ~ = - p  ( t + ~ ) o ~ +  k ( 2 ~ o ( x ~ - x ~ ) + x ~ : ~ y : - x . ~ : ~  -~p  ~, o ~ = - ~ x ~ z .  
h 

The main problem when using the energy method is to calculate the first and second 
variations of the energy, which are necessary in order to formulate the conditions of equilib- 
rium and for the iterative process of the solution. To obtain an algorithm for the calcula- 
tions we will introduce two levels of discrete parameters, representing the vectors of the 
generalized elastic displacements u and the generalized coordinates q of an element: 

u r =  ]~., O~, 0~, ~,, • ( 3 . 2 )  
~ i~,~,C,x~,x~, v ~v - -- ~2, 8, I 

(#i V is the angle of rotation of the normal at the i-th node). 

Using (3.1) and (3.2) we can represent the potential energy of an element in the form 

H =(l /2)u~Ku.  

where K is a symmetric stiffness matrix with the following nonzero components: 

K~t = BA,t,  Iq4 = ~,K~ ~, K:2 = D [4 + k (3x~t + zL~) ]/t, 

K23 ---- 2DA,/I, K2s = --vD(1 + kxH),  

Kz3 = D  [4+  k(x l i  + 3xl2)]/I, Ks5 = v D ( l  + kxt2), K44 = Kil, K55 = D A , t .  

The condition for the total potential energy to be stationary 6(H + W) = 0 leads to the 
following system of nonlinear algebraic equations: 

H6q + g = 0 .  ( 3 . 3 )  

Here H and g are the Hess matrix and the gradient, which can be calculated from the formulas 

- - u ' P  + p, g- -  . g P = K m  ( 3 . 4 )  

H ~ u ' K ( u ' )  r +  P~u~+H p ( i = l  . . . . .  5) 

(u '  and u~ are matrices of the first and second derivatives of the components of the vector 

u with respect to the components of the vector q). The nonzero components of the matrix u 
have the form 

o~jox v -- b A x  v, oo , / oC  ~ b~x;v  

ao~lo~ v = bkxjk~j~,V V o~,/Ox v = 0 / 2 ) k V A 7 , ,  

Oe,/O~ = A T  1, OedOk v = xV A F  ' ,  

O• = (112) kV2~AF x, Ox,lOk v = ~.~VA7~ 
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(I~. are the direction cosines of the unit vector, tangential to the deformed contour of the 
3~ 

transverse cross section at the i-th node). The nonzero components of the matrices of the 
second derivatives are given by the relations 

O~0d&p v~ = - -  o~x~t.~" V . n V ,  O % / O x ~ O k V  --  (t/2) A7 ~, 

O%la,rv& v -= ( 1 / 2 )  ~.VA-1].i , , a2• = - ( 1 / 2 )  k v k ' ~ V A t ~ .  

The vector g~iand the matrix Hv which occur in expression (3.4) reflect the effect of 
the internal pressure and have the following nonzero components: 

_ i ~:)x~ 7 k " , a 2 1 ' g ~  + + 

- -  ~ palaa,  h~l  = - -  y p k  al ,  

1 
h~2 = y = -- p k V a r  = _ P 7 k V a e  " 

= -- ~ px22,  lqs  = -- ~ pala2 ,  = ~ p 1 + e + , 

t V h~7 1 ~V h~s t t p k V a l ,  h ~ =  ~ p k  a 4, = T p~12 ,  . = ~ paa,  h~4 = - -  ~ 

I p x ~ ,  1,~8 1 1 t 
. h ~  v = ~ m ~ , , , / 4 :  = - v ; z ~ , / &  = - = _ . ~ Paa, 

" 9 V  = ., ~ v ~ v  + x ~ ,  ~, ~ + _ ~ , ~ .  

S i n c e  g and H :depend on q, t h e  p r o c e s s  o f  t h e  s o l u t i o n  u s i n g  scheme ( 3 . 3 )  i s  i t e r a t i v e  
and i s  c o n t i n u e d  u n t i l  t h e  c o n d i t i o n s  o f  e q u i l i b r i u m  a r e  s a t i s f i e d  w i t h  a s p e c i f i e d  d e g r e e  
o f  a c c u r a c y .  We c h o o s e  t h e  v e c t o r  q c o r r e s p o n d i n g  t o  t h e  u n d e f o r m e d  s t a t e  o f  t h e  s h e l l  a s  
t h e  i n i t i a l  a p p r o x i m a t i o n .  A l i n e a r  s o l u t i o n  o f  t h e  p r o b l e m  i s  o b t a i n e d  a f t e r  a s i n g l e  
iteration. 

The algorithm described can be used to calculate cylindrical and toroidal shells with 
arbitrary transverse cross section. One needs as initial data a knowledge of the values of 
the coordinates and the direction cosines of the normal at the nodes of the contour of the 
transverse cross section. 

4. Results of the Calculations. We will consider, as an application of the above 
algorithm, the problem of the bending of curvilinear tubes with a radius of the transverse 
cross section r, loaded in advance with an internal pressure. In Fig. I the numerical re- 
sults obtained for the flexibility f are compared with experimental data from [3]. Curve i 
is for a tube with the parameters ak = 0.15 and a/h = 93.84, while curve 2 is for a tube 
with parameters ak = 0.Ii and a/h = 93.84. It can be seen that the results of the numerical 
solution agree well with the experimental data. 

In Figs. 2 and 3 weshow the results of nonlinear deformation and the stability of 
toroidal shells of circular cross section with initial curvature parameter ~ = 5, where 

= (12(1 - v2))112 • rmk/h, v = 0.3. The continuous curves represent the dimensionless 

moment m = (12(1 - ~2))i/2Mr=/hEl as a function of the bending parameter of the axial line 

= (12(1 - v2))i/2rm(kV - k)/h, for different levels of pressure, characterized by the 

quantity p = 4(1 - v2)(r/h)~p/E (I = ~r3h is the moment of inertia of the transverse cross 

section). The results obtained are compared with the solution given in [ll], which is 
represented by the dashed curves. In the region of positive values of the bending parameter 
the formula from [ii] gives lower values of the critical parameters =c and m c, while in the 
region of negative values of the bending parameter it gives higher values of ac and m c. 
For a > 0 the error in determining the critical moment reaches 38%, while the error in 
determining the critical bending reaches 50%; for = < 0, the errors amount to 7% and 15% 
respectively. 
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Note that for unbending of a shell, when there is no pressure (p = 0), a loss in sta- 
bility occurs when m c = ~c = -~" This result confirms the conclusions reached in [13]. 

It follows from the above analysis that the solutions of the problem of pure bending of 
tubes obtained previously [10-12], satisfactorily describe the deformation only at the 
initial stage of the loading, where the deviation of the transverse cross secti0n from a 
circular form is small. In the supercritical region these solutions become inadmissible, 
which can be explained by the simplified relations and limited number of terms of the 
approximating series employed. 
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The algorithm developed above can also be applied to the bending of shells which have 
transverse cross sections with corner points. The case of the bending of a curvllinear 
tube with a rectangular transverse cross section is described in the linear formulation in 
[16]. The nonlinear problem has not so far been considered. 

In Fig. 4 we show the nonlinear characteristics for a square transverse cross section 
of side a. The parameters of the load, the bending, and the initial curvature of the 
axial line are defined by the formulas 

m = (3 ( i  - -  w2))~/2 M a ' / h E I ,  a = (3 ( i  - -  v2)) ~]2 ( k  V - -  k )  a2/h, 

= (3 (l -- ~) ) l/*(k/h) W2a 

( I  = ( 2 / 3 ) a 3 h / i s  t h e  m o m e n t  o f  i n e r t i a  o f  t h e  c r o s s  s e c t i o n ) .  A c h a r a c t e r i s t i c  f e a t u r e  i s  
the fact that degeneration of the limiting point occurs as the initial curvature increases 
(~ ~ i0). In Figure 5 we show on a real scale, the forms of the deformed transverse cross 
section for different values of the bending parameter for ~ = 0. 

In conclusion we present the results of an investigation of the convergence of the 
above algorithm. Table 1 shows values of the critical parameters m c for toroidal shells 
with a circular transverse cross section as a function of the number of elements N which 
fit into half the contour of the section. 
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